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Criterion for Vibrational Freezing in a
Nozzle Expansion

\ R. PuiNNEY*
Martin Company, Baltimore, Md.

HE flow of a dissociating gas has been studied in some
detail, and criteria for the point at which the recombina-
tion process freezes have been developed and verified.'=3 The
purpose of this note is to show that the same criterion can be
used to predict vibrational freezing as well. This vibrational
criterion is checked against numerical data given in Ref. 4.
The criterion of Bray is nearly the same as that of Refs.
1 and 3. For convenience, the later formulation is used as
the basis of the present work. The rate equation governing
the dissociational relaxation process can be written as

da/dr = — (a — ag)/r ey

The notation is that of Refs. 2 and 3, where r is a relaxation
distance depending on temperature, density, and degree of
dissociation «. The subscript e indicates the local equilib-
rium value. An argument is given to show that the reaction
will freeze at the point in the flow where

Aleo/ AT = Clowo/Teeo (2)

The subscript e = indicates the local value for the equilibrium
(infinite rate) nozzle flow. In other words, the criterion
requires only the equilibrium solution to establish the freezing
point.

Define D to be the dissociation energy per mole so that
aD = E;. is the dissociation energy present in the flow. If
both sides of Eqs. (1) and (2) are multiplied by D, then they
take the form

dEdiss/dx = - (Edlss - Ediss e)//T (3)
dEdiss eoo/dx = Ediss eso/reao (4)

But Eq. (3) is in the same form that the vibrational relaxa-
tion equation usually takes [Eq. (5) of Ref. 4]:

dEvib/dx = - (Evip — Eoip z)/r (5)

so that it is natural to try the: modiﬁed form of Eq. (4) to
predict the vibrational freezing point:

dE 3 /0% = Euip em/rw'; (6)

Reference 4 gives the numerical results for a nozzle flow of a
step bystep. integration of Eq. (5) together with the other fluid
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dynamical equations to obtain the asymptotic (freeze point)
value of the vibrational temperature T,;. For comparison,
the freeze point has been determined graphically using Eq.
(6), which is used in the form

TPo dEvib e T

_ DPors -
Eiivew dt @

tanf  tanf

where r, is the throat radius in centimeters, 8 is the half angle
of the conical nozzle, po is the stagnation pressure in atmos-
spheres, and 7 is the vibrational relaxation time. The flow
with vibrational equilibrium can be calculated in nondimen-
ional form so that for a given stagnation temperature the
stagnation pressure enters only in the parameter pors/tand,
and the left-hand side of Eq. (7) is a function of temperature
only. In plotting the curve, the same gas data and depend-
ence of 7 on temperature were used as were used in Ref. 4.
The result is shown in Fig. 1. Table 1 gives the comparison
between the freeze point temperature as given in Ref. 4 and
as determined from Fig. 1. As can be seen, the agreement is
quite good considering the fact that both Ref. 4 and the
present work have used approximate procedures and fairing to
achieve the final result. ’

Table 1 Comparison of exact and approximate values of
vibrational freezing temperature

T,
Ty (present
Po, (Ref. 4), method),
Ty, °K 6 psi °K °K
3000 5 1000 1908 1820
5 2000 1752 1690
5 4000 1612 1560
15 1000 2140 2205
15 2000 1995 1900
15 4000 1853 1775
2000 5 1000 1515 1410
5 2000 1380 1310
5 4000 1272 1210
15 1000 1712 1565
15 2000 1577 1465
15 4000 1450 1370
1000 5 1000 912 815
5 2000 850 760
5 4000 770 710
15 1000 955 890
© 15 2000 922 845
15 4000 872 795
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Influence of Calorimeter Heat Transfer
Gages on Aerodynamic Heating

Tupor SPRINKS*
Tazt Institute of Mathematical Physics, Edinburgh

Nomenclature

z = space variable in the mainstream direction

U = fluid speed in the z direction

l = a typical length for the flow

Re = flow Reynolds number based on this length [ and on
freestream conditions

7o(x) = wall skin friction

) = local fluid mass density

a{x) = rate of conductive heat transfer to the wall

h = local fluid total enthalpy

g = (1 — h/h), local nondimensional total enthalpy

a = coefficient in Eq. (2) for skin friction

Subscripts

e = evaluated external to the boundary layer (in main-
stream)

0 = evaluated at the wall

d = evaluated at a wall-temperature discontinuity

1 = evaluated at the front edge of a gage

2 = evaluated at the rear edge of a gage

x = based on the length z instead of on [

Analysis

HE center of a calorimeter heat transfer gage such as is

described by Rose and Stark! reaches, by design, after
a short time a temperature lower than that of the surrounding
model surface. It is desirable to find the effect of this
near-discontinuity in surface temperature on the aerodynamie
heating rate measured by the gage.

An analysis first proposed by Lighthill? which linearized
the boundary layer energy equation is useful here. The
linearization is better for small streamwise pressure gradient
and for large Prandtl number. Lighthill? analyzed only the
case of zero streamwise pressure gradient, although Illing-
worth? later analyzed the case of nonzero pressure gradient.
Only the constant pressure case is used here to illustrate the
influence of a nearly discontinuous wall temperature.

Solution of the linearized energy equation for a given wall-
temperature distribution results? in the following expression
for the heat transfer go(x) to the wall:

0o(2) @ 6—1/3{ 270(x) }1/2 «
pe(@) () ho() 2F)! pol) usA ()

. L f amm | T
»l:m:O d0l=) [j;l —l— {Pe($2)u22(x2)} e, ] <1)
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(Note that (3)! = 0.8930.) Lighthill? indicates that the
accuracy of Eq. (1) may be improved by a suitable alteration
of the constant multiplier of its right-hand side.

Application to the Gage Problem

To find the effect of the nearly discontinuous surface-
temperature distribution associated with a calorimeter gage,
the practical temperature distribution is approximated by
one with a discontinuous decrease at the front of the gage
and with a discontinuous increase at its rear edge. Such a
distribution comprises a continuous one and one that is zero
everywhere except on the gage where it has a constant nega-
tive value. Since the energy equation had been linearized,
the results of applying Eq. (1) to each of these constituent
distributions in turn may be added to give the required solu-
tion. It also is apparent from Eq. (1) that the contributions
from any additional square-wave temperature distributions
may be added separately. Such contributions have no up-
stream influence.

One should realize from the energy equation? that the
assumed temperature discontinuity at the wall would result
in an infinite wall heat transfer rate at the point of discon-
tinuity. This invalidates Lighthill’s? linearizing assumption
at that point. However, the author considers that the solu-
tion offered here remains a good approximation for the local
heating rate, except at the discontinuity where the nature of
the temperature change needs exact specificaticn and an
excellent approximation for the averaged gage heating rate.

The wall skin friction for the constant pressure is assumed
to be given by

2ro(z)/ pe()u(z) = o Re, ™12 2)

in which @ = £, as given by Horwarth.* At x = x4, a jump
in o(gz) of goa now is allowed. Then in addition to the wall
heating rate arising from the continuous part of the wall-
temperature distribution, there is behind the point of dis-
continuity a contribution of magnitude é¢o(zx) given by

b0o(2) @

L 2ro(z) | V2
po(@)u(@)he() 2(3)! } %

e {pxx)uz(x)
xd 3/4} —1/3
Goa {1 - 7 (3)

The accuracy of Eq. (3) also may be improved by suitable
alteration of the constant multiplier of its right-hand side.
The infinite heating rate at the assumed temperature dis-
continuity is apparent from Eq. (3).

Consider now a calorimeter gage mcunted between x =
and z = z». The temperature function go(z) is taken as one
that is constant at go(0*) except on the gage where it is g
lower than elsewhere. In front of the gage the heating rate
is unchanged at go(z), the value due to g,(0*) alone. On the
gage the fractional increase in the wall heating rate is

80(2)  gu o 3/4‘—1‘/3
2@ 909 {1 <x> } ®

and behind the gage it is

woans -G -G

(4a)

In practice, an averaged heating rate of the gage is meas-
ured. . Eq. (4) is seen to produce a finite average, making
the present result physically acceptable. The averaged
error obtainable from Eq. (4) is seen to increase directly with
the temperature step and to be larger for a gage of small ex-
tent in comparison with its distance from the leading edge. .



