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Criterion for Vibrational Freezing in a
Nozzle Expansion

R. PHINNEY*
Martin Company, Baltimore, Md.

THE flow of a dissociating gas has been studied in some
detail, and criteria for the point at which the recombina-

tion process freezes have been developed and verified.1"3 The
purpose of this note is to show that the same criterion can be
used to predict vibrational freezing as well. This vibrational
criterion is checked against numerical data given in Ref. 4.

The criterion of Bray is nearly the same as that of Refs.
1 and 3. For convenience, the later formulation is used as
the basis of the present work. The rate equation governing
the dissociational relaxation process can be written as

da/dx = — (a — ae)/r (1)
The notation is that of Refs. 2 and 3, where r is a relaxation
distance depending on temperature, density, and degree of
dissociation a. The subscript e indicates the local equilib-
rium value. An argument is given to show that the reaction
will freeze at the point in the flow where

The subscript e «> indicates the local value for the equilibrium
(infinite rate) nozzle flow. In other words, the criterion
requires only the equilibrium solution to establish the freezing
point.

Define D to be the dissociation energy per mole so that
aD = Ed-lss is the dissociation energy present in the flow. If
both sides of Eqs. (1) and (2) are multiplied by D, then they <
take the form

dEdiss/dx = - (Edlss -

dEd-lsseoo/dx = #diSSe=

(3)

(4)

But Eq. (3) is in the same form that the vibrational relaxa-
tion equation usually takes [Eq. (5) of Ref. 4]:

dEvib/dx = — (Evu> — Ev\be)/r (5)

so that it is natural to try the modified form of Eq. (4) to
predict the vibrational freezing p'oint:

dE/^^/dX = #vib eco/Veco (6)

Reference 4 gives the numerical results for a nozzle flow of a
step fey-;s||pintegratiori of Eq. (5) together with the other fluid

Fig. 1 Curves for the determination of freeze temperature

dynamical equations to obtain the asymptotic (freeze point)
value of the vibrational temperature Tf. For comparison,
the freeze point has been determined graphically using Eq.
(6), which is used in the form

: r*
tan0#vibeoc dt tan0

where r* is the throat radius in centimeters, 0 is the half angle
of the conical nozzle, p0 is the stagnation pressure in atmos-
spheres, and T is the vibrational relaxation time. The flow
with vibrational equilibrium can be calculated in nondimen-
ional form so that for a given stagnation temperature the
stagnation pressure enters only in the parameter p0?"*/tan0,
and the left-hand side of Eq. (7) is a function of temperature
only. In plotting the curve, the same gas data and depend-
ence of T on temperature were used as were used in Ref. 4.
The result is shown in Fig. 1. Table 1 gives the comparison
between the freeze point temperature as given in Ref. 4 and
as determined from Fig. 1. As can be seen, the agreement is
quite good considering the fact that both Ref. 4 and the
present work have used approximate procedures and fairing, to
achieve the final result.

Table 1 Comparison of exact and approximate values of
vibrational freezing temperature
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(Ref. 4),
°K

1908
1752
1612
2140
1995
1853
1515
1380
1272
1712
1577
1450
912
850
770
955
922
872

Tf
(present
method),

°K

1820
1690
1560
2205
1900
1775
1410
1310
1210
1565
1465
1370
815
760
710
890
845
795
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Influence of Calorimeter Heat Transfer
Gages on Aerodynamic Heating

TUDOR SPRINKS*
Tail Institute of Mathematical Physics, Edinburgh

Nomenclature

x = space variable in the mainstream direction
u = fluid speed in the x direction
I = a typical length for the flow
Re = flow Reynolds number based on this length / and on

freestream conditions
T0(x) = wall skin friction
p = local fluid mass density
OQ(X) = rate of conductive heat transfer to the wall
h = local fluid total enthalpy
g = (1 — h/he), local nondimensional total enthalpy
a. = coefficient in Eq. (2) for skin friction

Subscripts
e = evaluated external to the boundary layer (in main-

stream)
0 = evaluated at the wall
d = evaluated at a wall-temperature discontinuity
1 = evaluated at the front edge of a gage
2 = evaluated at the rear edge of a gage
x = based on the length x instead of on I

Analysis

THE center of a calorimeter heat transfer gage such as is
described by Rose and Stark1 reaches, by design, after

a short time a temperature lower than that of the surrounding
model surface. It is desirable to find the effect of this
near-discontinuity in surface temperature on the aerodynamic
heating rate measured by the gage.

An analysis first proposed by Lighthill2 which linearized
the boundary layer energy equation is useful here. The
linearization is better for small streamwise pressure gradient
and for large Prandtl number. Lighthill2 analyzed only the
case of zero streamwise pressure gradient, although Illing-
worth3 later analyzed the case of nonzero pressure gradient.
Only the constant pressure case is used here to illustrate the
influence of a nearly discontinuous wall temperature.

Solution of the linearized energy equation for a given wall-
temperature distribution results2 in the following expression
for the heat transfer QQ(X) to the wall:

e(x)ue(x)he(x)
Re~l : i ^

\P.(X)

f
Jxi=
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(Note that (•£)! = 0.8930.) Lighthill2 indicates that the
accuracy of Eq. (1) may be improved by a suitable alteration
of the constant multiplier of its right-hand side.

Application to the Gage Problem

To find the effect of the nearly discontinuous surface-
temperature distribution associated with a calorimeter gage,
the practical temperature distribution is approximated by
one with a discontinuous decrease at the front of the gage
and with a discontinuous increase at its rear edge. Such a
distribution comprises a continuous one and one that is zero
everywhere except on the gage where it has a constant nega-
tive value. Since the energy equation had been linearized,
the results of applying Eq. (1) to each of these constituent
distributions in turn may be added to give the required solu-
tion. It also is apparent from Eq. (1) that the contributions
from any additional square-wave temperature distributions
may be added separately. Such contributions have no up-
stream influence.

One should realize from the energy equation2 that the
assumed temperature discontinuity at the wall would result
in an infinite wall heat transfer rate at the point of discon-
tinuity. This invalidates Lighthill's2 linearizing assumption
at that point. However, the author considers that the solu-
tion offered here remains a good approximation for the local
heating rate, except at the discontinuity where the nature of
the temperature change needs exact specification and an
excellent approximation for the averaged gage heating rate.

The wall skin friction for the constant pressure is assumed
to be given by

2rQ(x)/Pe(x)ue\x) = a (2)

in which a =^ •§-, as given by Horwarth.4 At x = x*, a jump
in Q(gx) of god now is allowed. Then in addition to the wall
heating rate arising from the continuous part of the wall-
temperature distribution, there is behind the point of dis-
continuity a contribution of magnitude dq0(x) given by

o (x)
Pe(x)ue(x)he(x)

(f)2/3 «
2(4)1

1/3

(3)

The accuracy of Eq. (3) also may be improved by suitable
alteration of the constant multiplier of its right-hand side.
The infinite heating rate at the assumed temperature dis-
continuity is apparent from Eq. (3).

Consider now a calorimeter gage mounted between x = xi
and x — x%. The temperature function gQ(x) is taken as one
that is constant at #o(0+) except on the gage where it is g0i
lower than elsewhere. In front of the gage the heating rate
is unchanged at q0(x), the value due to #0(0+) alone. On the
gage the fractional increase in the wall heating rate is

~ 00(0+)

and behind the gage it is

Hf)"V (4)

qo(x)
(4a)

In practice, an averaged heating rate of the gage is meas-
ured. Eq. (4) is seen to produce a finite average, making
the present result physically acceptable. The averaged
error obtainable from Eq. (4) is seen to increase directly with
the temperature step and to be larger for a gage of small ex-
tent in comparison with its distance from the leading edge. .


